1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436 | #include <iostream>
#include <string>
#include <vector>
#include <cstdlib>
#include <cmath>
#include <random>
#include <ctime>
#include <fstream>
#include <streambuf>
#include <stdexcept>
#include <OpenCL/OpenCL.h>
std::random_device rd;
std::mt19937 rng(rd());
class KMeans {
private:
std::vector< std::pair<int, int> > points;
std::vector< std::pair<int, int> > centroids;
std::vector<int> clusters;
int cluster_tot; /* Total number of clusters */
int points_tot;
const int max_iter = 10 * 1000; /* Max number of iteration */
const double threshold = 1e-3; /* Stopping criterion */
cl_device_id device_id;
cl_context context;
cl_command_queue commands;
cl_program program_reassign, program_recompute;
cl_kernel kernel_reassign, kernel_recompute;
double compute_score();
void reassign();
void reassign_GPU();
void recompute();
void recompute_GPU();
public:
KMeans(int bound, int cluster_tot, int points_tot);
int numPoints() { return points_tot; }
int getCluster(int i) { return clusters[i]; }
std::vector<int> getClusters() { return clusters; }
std::pair<int, int> getPoint(int i) { return points[i]; }
void run();
void setup_cl();
};
KMeans::KMeans(int bound, int cluster_tot_, int points_tot_) {
std::uniform_int_distribution<int> uni(0, bound);
cluster_tot = cluster_tot_;
points_tot = points_tot_;
points = std::vector< std::pair<int, int> >(points_tot);
clusters = std::vector<int>(points_tot);
centroids = std::vector< std::pair<int, int> >(cluster_tot);
for (int i = 0; i < points_tot; i++) {
points[i] = std::make_pair(uni(rng), uni(rng));
clusters[i] = i % cluster_tot;
}
for (int k = 0; k < cluster_tot; k++) {
centroids[k] = std::make_pair(uni(rng), uni(rng));
}
}
std::string read_kernel(std::string path) {
std::ifstream s(path);
if (s.is_open()) {
return std::string((std::istreambuf_iterator<char>(s)),
std::istreambuf_iterator<char>());
}
throw std::invalid_argument("Failed to open file " + path);
}
void KMeans::setup_cl() {
std::string reassign_kernel_code = read_kernel("reassign.cl");
std::string recompute_kernel_code = read_kernel("recompute.cl");
const char* reassign_k = reassign_kernel_code.c_str();
const char* recompute_k = recompute_kernel_code.c_str();
int err;
int gpu = 1;
err = clGetDeviceIDs(NULL, gpu ? CL_DEVICE_TYPE_GPU : CL_DEVICE_TYPE_CPU, 1, &device_id, NULL);
if (err != CL_SUCCESS)
throw std::invalid_argument("Error: Failed to create a device group!");
context = clCreateContext(0, 1, &device_id, NULL, NULL, &err);
if (!context)
throw std::invalid_argument("Error: Failed to create a compute context!");
commands = clCreateCommandQueue(context, device_id, 0, &err);
if (!commands)
throw std::invalid_argument("Error: Failed to create a command commands!");
program_reassign = clCreateProgramWithSource(context, 1, (const char **) & reassign_k, NULL, &err);
if (!program_reassign)
throw std::invalid_argument("Error: Failed to create program Reassign!");
program_recompute = clCreateProgramWithSource(context, 1, (const char **) & recompute_k, NULL, &err);
if (!program_recompute)
throw std::invalid_argument("Error: Failed to create program Recompute!");
err = clBuildProgram(program_reassign, 0, NULL, NULL, NULL, NULL);
if (err != CL_SUCCESS) {
size_t len;
char buffer[2048];
clGetProgramBuildInfo(program_reassign, device_id, CL_PROGRAM_BUILD_LOG, sizeof(buffer), buffer, &len);
throw std::invalid_argument("Failed to build kernel reassign:\n" + std::string(buffer));
}
err = clBuildProgram(program_recompute, 0, NULL, NULL, NULL, NULL);
if (err != CL_SUCCESS) {
size_t len;
char buffer[2048];
clGetProgramBuildInfo(program_recompute, device_id, CL_PROGRAM_BUILD_LOG, sizeof(buffer), buffer, &len);
throw std::invalid_argument("Failed to build kernel recompute:\n" + std::string(buffer));
}
kernel_reassign = clCreateKernel(program_reassign, "reassign", &err);
if (!kernel_reassign || err != CL_SUCCESS)
throw std::invalid_argument("Error: Failed to create compute kernel reassign!");
kernel_recompute = clCreateKernel(program_recompute, "recompute", &err);
if (!kernel_recompute || err != CL_SUCCESS)
throw std::invalid_argument("Error: Failed to create compute kernel!");
}
double euclid(std::pair<int, int> p1, std::pair<int, int> p2) {
return sqrt(pow(p1.first - p2.first, 2.0) + pow(p1.second - p2.second, 2.0));
}
double KMeans::compute_score() {
double score = 0.0;
for (int i = 0; i < points_tot; i++) {
//std::cout << "LOL" << std::endl;
std::pair<int, int> coord = points[i];
//std::cout << "LOL2 " << clusters[i] << std::endl;
std::pair<int, int> cent = centroids[clusters[i]];
double d = euclid(coord, cent);
score += d;
}
return score;
}
void KMeans::run() {
double current_score = 0.0;
int iter = 0;
while (true) {
//std::cout << "ITER " << iter << std::endl;
double sc = compute_score();
std::cout << "New score " << sc << std::endl;
if (std::abs(sc - current_score) < threshold || iter >= max_iter) {
std::cout << iter << " iterations" << std::endl;
break;
}
current_score = sc;
reassign();
//reassign_GPU();
//recompute();
recompute_GPU();
iter++;
}
}
/* Reassign each point to its nearest centroid */
void KMeans::reassign() {
for (int i = 0; i < points_tot; i++) {
double dmin = 1e25;
int kmin = 0;
//std::cout << "LAULE " << i << " / " << points_tot << std::endl;
for (int k = 0; k < cluster_tot; k++) {
double d = euclid(points[i], centroids[k]);
if (d < dmin) {
kmin = k;
dmin = d;
}
}
clusters[i] = kmin;
}
}
void KMeans::reassign_GPU() {
int err;
/* Define buffers */
cl_mem out_clusters = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(int) * points_tot, NULL, NULL);
cl_mem in_points = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(int) * points_tot * 2, NULL, NULL);
cl_mem in_centroids = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(int) * cluster_tot * 2, NULL, NULL);
/* Fill buffers */
int* c_points = (int*) malloc(sizeof(int) * points_tot * 2);
for (int i = 0; i < points_tot; i++) {
c_points[2 * i] = points[i].first;
c_points[2 * i + 1] = points[i].second;
}
if (clEnqueueWriteBuffer(commands, in_points, CL_TRUE, 0,
sizeof(int) * points_tot * 2, c_points, 0, NULL, NULL) != CL_SUCCESS) {
throw std::invalid_argument("Failed to write to c_points array");
};
int* c_centroids = (int*) malloc(sizeof(int) * cluster_tot * 2);
for (int i = 0; i < cluster_tot; i++) {
c_centroids[2 * i] = centroids[i].first;
c_centroids[2 * i + 1] = centroids[i].second;
}
if (clEnqueueWriteBuffer(commands, in_centroids, CL_TRUE, 0,
sizeof(int) * cluster_tot * 2, c_centroids, 0, NULL, NULL) != CL_SUCCESS) {
throw std::invalid_argument("Failed to write to c_centroids array");
};
err = 0;
err = clSetKernelArg(kernel_reassign, 0, sizeof(cl_mem), &in_points);
err |= clSetKernelArg(kernel_reassign, 1, sizeof(cl_mem), &in_centroids);
err |= clSetKernelArg(kernel_reassign, 2, sizeof(cl_mem), &out_clusters);
err |= clSetKernelArg(kernel_reassign, 3, sizeof(int), &points_tot);
err |= clSetKernelArg(kernel_reassign, 4, sizeof(int), &cluster_tot);
if (err != CL_SUCCESS) {
throw std::invalid_argument("Failed to set arguments");
}
size_t local, global;
err = clGetKernelWorkGroupInfo(kernel_reassign, device_id, CL_KERNEL_WORK_GROUP_SIZE, sizeof(local), &local, NULL);
if (err != CL_SUCCESS) {
throw std::invalid_argument("Failed to set arguments 1");
}
global = local;
while (points_tot < global) {
global *= 2;
}
err += clEnqueueNDRangeKernel(commands, kernel_reassign, 1, NULL, &global, &local, 0, NULL, NULL);
clFinish(commands);
if (err != CL_SUCCESS) std::cout << err << std::endl;
if (err != CL_SUCCESS) {
throw std::invalid_argument("Failed to set arguments 2");
}
err += clEnqueueReadBuffer( commands, out_clusters, CL_TRUE, 0, sizeof(int) * points_tot, clusters.data(), 0, NULL, NULL );
if (err != CL_SUCCESS) {
throw std::invalid_argument("Failed to set arguments 3");
}
}
void KMeans::recompute() {
std::vector<int> clusters_size = std::vector<int>(cluster_tot, 0);
std::vector<int> clusters_x = std::vector<int>(cluster_tot, 0);
std::vector<int> clusters_y = std::vector<int>(cluster_tot, 0);
for (int i = 0; i < points_tot; i++) {
clusters_size[clusters[i]]++;
clusters_x[clusters[i]] += points[i].first;
clusters_y[clusters[i]] += points[i].second;
}
for (int k = 0; k < cluster_tot; k++) {
if (!clusters_size[k]) {
continue;
}
centroids[k] =
std::make_pair(
(int) (clusters_x[k] / clusters_size[k]),
(int) (clusters_y[k] / clusters_size[k])
);
}
}
void KMeans::recompute_GPU() {
int err;
/* Define buffers */
cl_mem in_clusters = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(int) * points_tot, NULL, NULL);
cl_mem in_points = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(int) * points_tot * 2, NULL, NULL);
cl_mem out_clusters_size = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(int) * points_tot, NULL, NULL);
cl_mem out_clusters_x = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(int) * points_tot, NULL, NULL);
cl_mem out_clusters_y = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(int) * points_tot * 2, NULL, NULL);
/* Fill buffers */
int* c_points = (int*) malloc(sizeof(int) * points_tot * 2);
for (int i = 0; i < points_tot; i++) {
c_points[2 * i] = points[i].first;
c_points[2 * i + 1] = points[i].second;
}
if (clEnqueueWriteBuffer(commands, in_points, CL_TRUE, 0,
sizeof(int) * points_tot * 2, c_points, 0, NULL, NULL) != CL_SUCCESS) {
throw std::invalid_argument("Failed to write to c_points array");
};
if (clEnqueueWriteBuffer(commands, in_points, CL_TRUE, 0,
sizeof(int) * points_tot, clusters.data(), 0, NULL, NULL) != CL_SUCCESS) {
throw std::invalid_argument("Failed to write to c_clusters array");
};
int* c_clusters_size = (int*) malloc(sizeof(int) * points_tot);
int* c_clusters_x = (int*) malloc(sizeof(int) * points_tot);
int* c_clusters_y = (int*) malloc(sizeof(int) * points_tot);
err = 0;
err = clSetKernelArg(kernel_recompute, 0, sizeof(cl_mem), &in_points);
err |= clSetKernelArg(kernel_recompute, 1, sizeof(cl_mem), &in_clusters);
err |= clSetKernelArg(kernel_recompute, 2, sizeof(cl_mem), &out_clusters_size);
err |= clSetKernelArg(kernel_recompute, 3, sizeof(cl_mem), &out_clusters_x);
err |= clSetKernelArg(kernel_recompute, 4, sizeof(cl_mem), &out_clusters_y);
err |= clSetKernelArg(kernel_recompute, 5, sizeof(int), &points_tot);
if (err != CL_SUCCESS) {
std::cout << err << std::endl;
throw std::invalid_argument("Failed to set arguments");
}
size_t local, global;
err = clGetKernelWorkGroupInfo(kernel_recompute, device_id, CL_KERNEL_WORK_GROUP_SIZE, sizeof(local), &local, NULL);
if (err != CL_SUCCESS) {
throw std::invalid_argument("Failed to set arguments 1");
}
global = local;
while (points_tot < global) {
global *= 2;
}
err += clEnqueueNDRangeKernel(commands, kernel_recompute, 1, NULL, &global, &local, 0, NULL, NULL);
clFinish(commands);
if (err != CL_SUCCESS) std::cout << err << std::endl;
if (err != CL_SUCCESS) {
throw std::invalid_argument("Failed to set arguments 2");
}
err += clEnqueueReadBuffer( commands, out_clusters_size, CL_TRUE, 0, sizeof(int) * points_tot, c_clusters_size, 0, NULL, NULL );
err += clEnqueueReadBuffer( commands, out_clusters_x, CL_TRUE, 0, sizeof(int) * points_tot, c_clusters_x, 0, NULL, NULL );
err += clEnqueueReadBuffer( commands, out_clusters_y, CL_TRUE, 0, sizeof(int) * points_tot, c_clusters_y, 0, NULL, NULL );
if (err != CL_SUCCESS) {
throw std::invalid_argument("Failed to set arguments 3");
}
for (int k = 0; k < cluster_tot; k++) {
if (!c_clusters_size[k]) {
continue;
}
centroids[k] =
std::make_pair(
(int) (c_clusters_x[k] / c_clusters_size[k]),
(int) (c_clusters_y[k] / c_clusters_size[k])
);
}
}
int main(int argc, char **argv) {
const int WINDOW_SIZE = 1500;
/*if (SDL_Init(SDL_INIT_EVERYTHING) != 0) {
std::cerr << "SDL_Init error: " << SDL_GetError() << std::endl;
return 1;
}
SDL_Window *window;
SDL_Renderer *renderer;
SDL_Event event;
SDL_CreateWindowAndRenderer(WINDOW_SIZE, WINDOW_SIZE, 0, &window, &renderer);
while (false) {
SDL_SetRenderDrawColor(renderer, 10, 10, 10, 0);
SDL_RenderClear(renderer);
for (int i = 0; i < kmeans.numPoints(); i++) {
int c = kmeans.getCluster(i);
std::pair<int, int> coord = kmeans.getPoint(i);
SDL_SetRenderDrawColor(renderer, c, 255-c, c, 255);
SDL_RenderDrawPoint(renderer, coord.first, coord.second);
}
SDL_RenderPresent(renderer);
if (SDL_PollEvent(&event) && event.type == SDL_MOUSEBUTTONDOWN)
break;
}*/
KMeans kmeans = KMeans(WINDOW_SIZE, 3, 1000);
kmeans.setup_cl();
std::cout << "BEGIN" << std::endl;
std::clock_t start = std::clock();
double duration;
kmeans.run();
duration = ( std::clock() - start ) / (double) CLOCKS_PER_SEC;
std::cout << " # DURATION: " << duration << "s" << std::endl;
std::cout << "END" << std::endl;
//SDL_DestroyRenderer(renderer);
//SDL_DestroyWindow(window);
// SDL_Quit();
return 0;
}
|